2.0 API Guide

Application Response Measurement

Notice

This document is protected by copyright. All rights are reserved. No part of this document
may be photocopied, reproduced, or trand ated to another language without prior written
consent of Hewlett-Packard Company and International Business Machines, Inc.. The
information contained in this document is subject to change without notice.

Hewl ett-Packard Co. and International Business Machines Inc. make no warranty of any kind with regard
to thismaterial, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose.

Hewl ett-Packard Co. and International Business Machines Inc. shall not be liable for errors contained
herein or for incidental or consequential damagesin connection with the furnishing, performance, or use
of this material.

Hewl ett-Packard Co. and International Business Machines Inc. assumes no responsibility for the use or
reliability of its software on equipment that is not furnished by Hewlett-Packard Co. or International
Business Machines Inc.

Microsofta , Microsoft Windows NTéa , and Microsoft Windows 954 are U.S. registered trademarks of
Microsoft Corporation.

RISC System/60004 is atrademark, AIXa and OS24 areregistered trademarks of International
Business Machines Corporation.

Sund and Solarisd are registered trademarks of Sun Microsystems, Inc.

UNIXa isaregistered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited.

Other third party logos and product/trade names are registered trademarks or trademarks of their
respective companies.

Hewl ett-Packard Company
OpenView Software Division
8000 Foothills Boulevard
Roseville, CA 95747-5726, USA

Tivoli Systems, Inc., awholly owned subsidiary of
International Business Machines

9442 Capital of Texas Highway North

Austin, TX 78759, USA

© Copyright Hewlett-Packard Company and International Business Machines Inc., 1997.

Printing History

New editions are complete revisions of the manual. The printing dates for each edition are
listed below.

VEISION L0t E0696

VEISION 2.0ttt nre e E1197

For Your Information

This Guideisintended for the application developers who wants to know how to instrument an
application for transaction monitoring using the standard Application Response Measurement
(ARM) AP function calls.

The 2.0 version of the ARM Software Devel oper's Kit has been devel oped with the help of the
ARM Working Group of the Computer Measurement Group (CMG).

The 2.0 ARM SDK, including this documentation, is available on CD and from the following
CMG web site:

http://ww. cng. or g/ r egi ons/ cngar nw
This web site also contains information on performance measurement agents that use the data
generated by the ARM API function calls and the latest information regarding future updates or
changesto the AFI.
A public discussion list for ARM, cngar mis now available at:

cngar m@ny. or g

To subscribe, send the following to maj or domo@ng. or g

subscri be cngarm

Acknowledgments

Thefollowing CMG ARM Working Group member companies have assisted in the
development of the 2.0 ARM API:

System Management Database and Application End Users
Vendors Tools Vendors Vendors

BGS Oracle SAS Boeing
www.bgs.com Www.oracle.com WWW.Sas.com www.boeing.com
BMC Unify SES Citicorp
www.bmc.com www.unify.com WWW.SES.com WwWw.citicorp.com

Candle
www.candle.com

Compuware
WWW.Compuware.com

Hewl ett-Packard
www.hp.com

Landmark
www.landmark.com

Sun
WWW.SUN.com

Tivoli/IBM
www.tivoli.com

Wells Fargo
www.wellsfargo.com

Contents

Application Response M easur ement

Measuring Service Levels

ARMing Your Applications

What's New in Version 2.0 of the ARM API

Basic Tasksfor Instrumenting an Application

What to Instrument

The Software Developer's Kit (SDK)

© O NN o~ WwWDN

The ARM Shared Library (libarm)
The Logging Agent

The Header File

Getting Started
Installation

For UNIX systems

For OS2, Windows NT, or Windows95 systems
Using the Logging Agent

Overview of the ARM API Function Calls

Adding ARM Function Callsto an Application

Definition of Data Type Terminology

Testing Your Instrumentation

Logging Agent Sample Output

arm_init

arm_getid

arm_start

arm_update

arm_stop

arm_end

Vi

e
o o

NN R R R RRRRRP
PO WO UWwWwNNDN

W W N N DN DN
o N © N B DN

Advanced Topics

Additional Data Passed in the ARM Function Calls

Transaction Correlation

Application-Defined Metrics

Choosing A Data Type

Format of Data Buffer in arm_getid

Data Type Definitions

Format of Data Buffer in arm_start, arm_update, arm_stop
Three Ways to Instrument within a Transaction Instance

Internationalization

Appendix: Measurement Agent I nfor mation

Format of the Corréelator

Examples

arm.h Header File

C/C++ (all platforms) Sample 1

C/C++ (all platforms) Sample 2

37
37
38
42
42
45
47
49

55

57
58

65
65
71
76

Vil

Application Response Measurement
API

Application Response Measurement AP
Application Response M easur ement

Application Response Measurement

The applications that are used to run businesses have changed dramatically over the past few
years. In the early 1980s, large applications generally executed on large computers, and were
accessed from “dumb” terminals. Non-networked applications executing on personal
computers were just beginning to be widely used. Since then, these two application models
have moved steadily towards each other, fusing together to form distributed (networked)
applications.

The most common programming model for distributed applications is the client/server model.
In aclient/server application, the application is split into two or more parts. One part isthe
user or “client” part, and this part generally executes on a personal computer or workstation.
The “server” parts execute on computers that provide functions for the client part, that is, they
serve the client application. The client and server can run on the same system, but generally
they are on different systems. The client part of an application may invoke one or more
functions on one or more servers, and it may do a significant amount of processing itself —
combining, manipulating, or analyzing the data provided by the servers.

An example of a client/server application might be processing a sales order by retrieving
inventory information from one database, sales information from another database, and pricing
information from athird. The client part of the application determinesiif there is sufficient
inventory to accept the order, calculates the price based on current market conditions, factorsin
price discounts for this particular customer, and then invokes more server functions to complete
processing of the order.

By contrast, host-centric applications contain all the application logic in one computer system,
and users connect through “dumb” terminals to use the application. Examples of the protocols
used by these applications are 3270, Telnet, and X-Windows. The response time as seen by a
user for atransaction can generally be broken down into two components: the time to process
the transaction on the host, and the time for the input message and the output response.
Processing time at the terminal isusually trivial.

Application Response Measurement AP
Application Response M easur ement

Measuring Service Levels

A monitoring product running at the host is able to measure the service levels of host-centric
applications. The monitor observes the input request message that starts the transaction, and
then observes the outbound response back to the terminal. The difference between the two
timesis the amount of time to process the transaction on the host. The monitor generally also
measures the time for the outbound response to be sent to the terminal and an acknowledgment
to bereceived, using this as an approximation of the transit time. The combination of the host
and transit times is an approximation of the service level seen by the user.

Monitoring the performance and the availahility of distributed applications has not proven easy
to do. Some of the fundamental assumptions that the host-centric methods depend on do not
hold true. Some examples:

The user istypically running an application on a multitasking PC or workstation. When
the user presses a key or the mouse button, the specified transaction starts, but the user may
be able to continue doing other operations. Put another way, thereis no reliable way to
correlate keyboard or mouse input operations with business transactions.

One user transaction (which would be classified as a business transaction) may spawn
several other component transactions, some of which may execute locally and some
remotely. Any measurement agents that exist only in the network layer or in a host
(server) will not see the entire picture.

The data may be sent through the network using various protocols, not just one, making
the task of packet decoding and correlation much more difficult.

Client/server applications can be complex, taking different execution paths and spawning
different component transactions, depending on the results of previous component
transactions. Every permutation could take a different form when it goes across the
communication link, making it that much harder to reliably correlate network or host
(server) observations with what the user sees.

In spite of these difficulties, the need to monitor distributed applications has never been greater.
They areincreasingly being used in mission-critical roles. An approach that solves the
problems listed above isto let the application itself participate in the process. A devel oper
knows unambiguoudy when transactions begin and end, both those that are visible to the user,
and the component transactions that invoke transactions on remote servers.

Application Response Measurement AP
Application Response M easur ement

ARMing Your Applications

With the Application Response Measurement (ARM) API, a developer can easily mark sections
of an application to define business transactions. By invoking ARM API function calls at the
beginning and end of each transaction, you can enable your application to be monitored by any
of the measurement agents that use data generated by the ARM API. Programs executing on
client or server systems can be instrumented.

By instrumenting your application to call the ARM API, you enable your application to be
managed by any of the measurement agents that implement ARM. The advantage of this
approach isthat your application customers can choose the measurement agent that best meets
their needs without your application needing to change.

System administrators will be able to answer some key questions such as:
Is the application working correctly (available)?

How is the application performing? What isthe responsetime? What is the workload
throughput? Y ou will be measuring the actual service levels experienced by your users.

Why is an application not available or performing poorly? What operation was the
application performing when the problem occurred? If aremote server/application was
being invoked when the problem occurred, which one?

Who is using the application, how much are they using it, and what kind of operations are
being performed? Which servers are providing the services? Thisinformation is useful for
capacity planning and for charge-back accounting.

Application Response Measurement AP
Application Response M easur ement

Application Response Measurement

Enterprise Management Measurement ARM[™ s7arT Il Business
Agent | API | grop 7 Applications

i

Measurement ARM <= Business
Agent API SToP Applications

1
Clients

- Figure 1 ARM in the Enterprise

Figure 1 shows how enterprise management applications, measurement agents that implement
the ARM API, and business applications that call the ARM API work together to provide a
robust way to monitor application response.

Application Response Measurement AP
Application Response M easur ement

What's New in Version 2.0 of the ARM API

Several additions to the ARM API improve the ways your application can be managed.

You can indicate that a transaction is a component of another transaction. Y ou can do
transaction correlation within one system or across multiple systems. This permits a better
understanding of the overall transaction, how much time each part of the transaction is
taking, and where problems are occurring.

You can provide additional information about the transaction, such as the number of bytes
or records being processed, or about the state of the application at the moment that the
transaction is being processed, such asthe length of awork queue. Thisinformation
(called application-defined metrics) is useful to better understand response times, and how
the application can be tuned to perform better.

You can use the new logging agent to do simple verification of your instrumentation. It
allows you to determineif the correct parameters are being passed on each call, but it does
not function as a measurement agent.

Note that version 2.0 of the ARM API is backward compatible with version 1.0. Applications
instrumented to the ARM 1.0 API can continue to function correctly with agents that implement
the additional features of the 2.0 API. ARM 2.0 instrumented applications will function
correctly with agents that implement the features of the 1.0 API.

Application Response Measurement AP
Basic Tasksfor Instrumenting an Application

Basic Tasks for Instrumenting an Application

There are three basic tasks involved in instrumenting an application with the ARM API.

1. Definethe key business transactions. Thisisthe most important step. Each application
developer needs to define who needs what kind of data, and what the data will be used for.
It is common and useful for this process to be ajoint collaboration between the users and
developers of an application, and system and network administrators. There are two kinds
of transactions that will generally provide the greatest benefit if they are instrumented.
The following procedure is suggested.

Start with transactions that are visible to users or that represent major business
operations. These are the building blocks for service level agreements, for
workload monitoring, and for early problem detection.

Next, focus on transactions that are dependent on external services, such asa
database operation, a Remote Procedure Call (RPC), or a remote queue operation.
These generally are components of a user/business transaction. Knowing how
these types of transactions are performing can be invaluable when analyzing
problems, tuning applications, and reconfiguring systems and networks.

2. Modify the application to include callsto the ARM API. The NULL libraries and logging
agent in the ARM SDK can be used for initial testing. The key isto decide whereto place
calstothe ARM API, by doing a good job defining the key business transactions.

3. Replacethe NULL libraries or logging agent from the SDK with an ARM-compliant agent
and associated management applications. The distributed applications can now be
monitored in ways that previoudly could only be hoped for.

What to Instrument

The Application Response Measurement API is designed to instrument a unit of work, such as
a business transaction, that is performance sensitive. These transactions should be something
that needs to be measured, monitored, and for which corrective action can be taken if the
performance is determined to be too slow.

Application Response Measurement AP
Basic Tasksfor Instrumenting an Application

This APl is not designed to be a programmer profiling tool. The measurement agents using
data generated by this API are designed to give application/system managers data to understand
how their environment is performing, and whether all services are available.

For information on measurement agents that do transaction monitoring, refer to the web site
mentioned earlier under “For Your Information”. Links may be found on this site to
commercially available measurement agent solutions.

Some questions you may want to ask yourself when instrumenting a transaction are:

1

2.

What unit of work does this transaction define?

Arethe transaction counts and/or response times important?

Who will use thisinformation?

If performance of this transaction is too slow, is there some corrective action that can take

place (for example, offload work from the machine, add memory, rel ocate remote files,
etc.)?

Application Response Measurement AP
The Softwar e Developer's Kit (SDK)

The Software Devel oper's Kit (SDK)

This ARM SDK contains everything you need to prepare your application for transaction
monitoring. It comeswith a default no-operation (NULL) shared library that contains all the
function calls you will need and a header file. The NULL library allows developersto
instrument and run their applications without having one of the measurement agents installed.

Additionally, the source used to create the NULL library is part of the SDK. Thisis provided
so ashared library can be created for applications that exist on platforms not currently
supported by the measurement technologies. The SDK contains NULL libraries compiled for
UNIX systems (HP-UX, IBM AIX, NCR MP-RAS, and Sun Solaris) and PC based systems
(052, Windows NT, and Windows95). Thekit installs the correct library for the system.

A C language header fileis supplied for applications written in either C or C++.

The source code and header file for alogging agent is supplied for use in testing your
instrumentation.

Sample programs for C/C++ are provided as examples of how to instrument applications.
Examples for other programming languages from the ARM 1.0 SDK are also available on the
CD and the web site.

NOTE: Thear m | st file on the CD-ROM contains a detailed listing of al thefiles on the
CD-ROM.

The ARM Shared Library (libarm)

Thelibrary specified hereisaNULL shared library provided to resolve externalsin the code. If
you are working with a specific vendor’ s performance measurement agent you may want to use
thel i bar mlibrary supplied for that agent instead of the NULL library. The agent-specific
library will return errorsthat may be helpful during development, whereas the NULL library
will always return a non-error condition (0).

After ingtallation | i bar m* shared libraries reside in the directory where the system libraries
areinstalled. For example:

Application Response Measurement AP
The Softwar e Developer's Kit (SDK)

HP-UX 10.x fusr/lib/libarm sl

IBM AIX fusr/lib/libarma

Sun Solaris fusr/lib/libarmso

NCR MP-RAS fusr/lib/libarmso

Windows NT $wi ndi r $\ SYSTEM32\ LI BARVB2. DLL
Windows95 $wi ndi r $\ SYSTEM32\ LI BARVB2. DLL
0S/2 (32-bit) $os2di r $\ DLL\ LI BARM DLL

It is recommended that the library be used from the standard location. Thisis so applications
can locate the library in a standard location and be able to take advantage of a measurement
agent once it isinstalled on the system.

The Logging Agent

The source code for alogging agent, | ogagent . ¢, hasbeen included for use in testing your
instrumentation. The path is:

<install directory>/Ilib/logagent/| ogagent.c. on UNIX systems
<install directory>/ ARM SDK/LI B/ | ogagent/| ogagent.c on PC systems

Unlikethe NULL libraries, it isonly in source format so it needs to be compiled (see "Using the
Logging Agent" page 13 for more information on this).

The Header File

A C language header file, ar m h, issupplied for applications written in either C or C++. If
you are using a language other than C or C++, the data structures and external references need
to betrandated to the language you are using.

Note: Not all hardware systems or compilers provide native support for 64-bit integers— nor is

there yet a standard type declaration for them. For these reasons the distributed version of the
ar m h header file does not assume native support for 64 bit integers. However, the symbol

10

Application Response Measurement AP
The Softwar e Developer's Kit (SDK)

“INT64" can be defined near the front of the file to customize the header for compilers and
systems with 64 bit integer support.

11

Application Response Measurement AP
Getting Started

Getting Started

This section gives you the information you need to begin instrumenting your application with
the ARM API function calls.

Ingallation

To get started, you need to install the ARM SDK files on your system. Theinstallation process
installs the appropriate NULL shared library, the header files, the shared library source code,
logging agent source, documentation files and sample program files for your system.

Theingallation utility prompts you for a directory to install the ARM sourcefiles.

NOTE: The NULL librariesfor ARM 1.0 and ARM 2.0 are interchangeable, so afailureto
install will have noimpact. Y ou should contact your measurement agent vendor if you need to
update your agent’s shared library to ARM 2.0.

For UNIX systems
1. Placethe CD-ROM in the drive and mount the CD-ROM device onto your system.
2. Typecd <nount directory>.

3. Type./install (or./1NSTALL for HP-UX only)
then follow the promptsin theinstall process.

If al i bar m * shared library existsin the default directory, theinstall utility will not install
thelibrary. Thisissotheinstallation will not overlay an installation of one of the measurement
agent’slibraries. Install will not copy the library to the default (/ usr/ 1 i b) directory if the
directory is not writable by the user.

12

Application Response Measurement AP
Getting Started

For OS/2, Windows NT, or Windows95 systems

1. Placethe CD-ROM in thedrive.

2. Create a DOS window.

3. Changethe current drive to the CD-ROM drive.

4. Typel NSTALL <drive letter:\install directory>
Where<dri ve | etter> istheletter of the drive where you want to install the ARM
SDK and <i nst al I di rect ory> isthedirectory path for the location of where you
want to install the ARM SDK. Theingtall utility will put the filesinto a directory called
ARM SDK under the<i nstal | direct ory> specified.

5. CopytheLl BARWF. DLL to the standard location for the platform as shown below. Do
not copy the library if the library already exists in the destination directory since you may
be overwriting a measurement agent-specific library with a NULL library.
0os/2:
copy <install dir>\ ARM SDK\LI B\ OS2\ LI BARM DLL $os2di r$\ DLL\ LI BARM DLL
Windows95/Windows NT:
copy <install dir>\ARV SDK\ LI B\ WNB5_NT LI BARVB2. DLL wi ndi r $\ SYSTEMB2\ LI BARVB2. DLL

Using the Logging Agent

Thelogging agent is provided for usein testing your instrumentation. It provides more
information than the NULL library that only returns zeros but it does not function as a
measurement agent.

Thelogging agent is provided in source format only, so it must be compiled. Thelogging
agent source codefile, | ogagent . ¢, can beincluded and compiled with an application
implemented in C or it can be compiled into alibrary object and linked to an application.

13

Application Response Measurement AP
Getting Started

Statically link with the logging agent and then run your application. Programmatic calls to the
ARM API by the application result in the creation of atext filelog (I ogf i | e by default) that
contains a time-stamped history of the calls and the parameter val ues associated with those
cals. Seethe"Testing Your Instrumentation” section page 20 for a sample output file and
more information on using the logging agent.

14

Application Response Measurement AP
Getting Started

Overview of the ARM API Function Calls

The ARM API ismade up of a set of function callsthat are contained in a shared library. All
the performance measurement agents that support the ARM API provide their own
implementation of the shared library. When you insert the ARM API function callsin your
application, it can be monitored by the agents that implement the shared library. The
advantage of this approach isthat your application customers can choose any measurement
agent that best meets their needs without your application needing to change.

arminit During theinitialization of your application, call ar m_i ni t which names
your application and optionally the users, and initializes the ARM
environment for your application. A unique identifier is returned that must
be passedtoar m geti d.

armgetid Usear m get i d to name each transaction class you usein your application.
Thisis often done during the initialization of your application. A transaction
classisadescription of a unit of work, such as"Check Account Balance'. In
each program, each transaction class may be executed once or many times.
arm getid returnsauniqueidentifier that must be passed to
armstart.

armstart Each time a transaction classis executed, thisis atransaction instance.
arm start signalsthe start of execution of a transaction instance and
returns a unique handle to be passed to ar m updat e and ar m st op.

arm update Thisisan optional function call that can be made any number of times after
arm start andbeforear m st op. ar m updat e givesinformation
about the transaction instance, such as a “heartbeat” after a group of records
has been processed.

arm st op arm st op signalsthe end of the transaction instance.
arm end At termination of the application call ar m end which cleans up the ARM
environment for your application. There should be no problemif thiscall is

not made, but memory may be wasted because it is allocated by the agent even
though it is no longer needed.

15

Application Response Measurement AP
Getting Started

Adding ARM Function Callsto an Application

The following steps show how to add ARM API function callsto an application. Also shown is
avery smple application that has been instrumented with the | i bar mcalls. Each numbered
step below (1-4) is highlighted in the source code for the sample application that follows.

1. Oncethe SDK isinstalled, include the header file reference (ar m h for C and C++) in
your source code and modify the compilelink to reference the library.

2. ldentify the start and the end of the application and placethe callstoar m i ni t and
arm end. These calls are used for initialization and cleanup of the ARM environment for
your application, and therefore should be called from the initialization and exit sections of
your application.

3. Determine what transaction classes you want to instrument and the names to use to
uniquely identify each transaction class. Modify the codeto call ar m get i d for each
transaction class. Thear m get i d calls can also be made from the application
initialization section.

4. Cdlarmstart justprior tothe start of execution of the transaction and ar m_st op just
after the transaction completes.

When distributing your application, the NULL shared library must be included in your
installation package. By doing thisyou will insure that your application will load and execute
correctly, even if no measurement agent isinstalled. If thel i bar m * file already exists on
the system where your application is being installed, do not overwrite the library. Thelibrary
that exists may be the NULL library or it could be one of the measurement agent's libraries.

The API calls use the C calling conventions for UNIX systems, the PASCAL calling
conventions for OS2 and the _std calling conventions for Windows NT and Windows95.

/***********************k***/

/* sanple.c */
/***********************k***/

16

(1)

(2)

(3)

(4)

(4)

(2)

Application Response Measurement AP

Getting Started
#i ncl ude <stdio. h>
#incl ude "armh"”
int32 appl _id =-1; /* Uhique indentifer for the application */
int32 tranid=-1; /* Uhique identifier for the transaction */
void init()
{

appl _id =arminit("ARMsanple prograni, /* application nane */

e
0,0,0);
if (appl_id < 0)

/* use default user */

printf("ARMsanpl e programnot registered.\n");

tran_id = armgeti d(appl _id,

/* application id fromarminit */

" Sanpl e_transaction", /* transacti on name */
"Frst Transaction in Sanpl e progrant,

0,0,0);
if (tran_id <0)

printf("Sanpl e_transaction is not registered.\n");

Y/ init %/
voi d transaction()
{

int32 tran_handl e;

tran_handle = armstart(tran_id, /* transaction id fromarmgetid */
0,0,0);

/***k*,

/* Performactual transaction processing here*/
/***k*,

sl eep(1);
armstop(tran_handl e,
ARM GO,
0,0,0);
return;
} /* transaction */
nai n()
{
int continue_processing = 1;
init();
whi | e (continue_processi ng)

{

transaction();
}
arm end(appl _i d,
0,0,0);
return(0);

/* transaction handle fromarmstart */
/* successful conpletion define =0 */

/* applicationid fromarminit */

17

Application Response Measurement AP
Getting Started

ARM API Function Call Param eters

arm_init arm_getid arm_start arm_update arm_stop arm_end
appl_name X

appl_user_id (optional)
(user name)

X

tran_name X

tran_detail (optional)

tran_status

data and data_size
(optional)

Return Codes
appl_id (appl/user) o! A A

tran_id o A

start_handle (transaction) o A A

where Q ‘ indicates the code is returned from one call and passed to another

- Figure 2 ARM API Parameters

Figure 2 shows which parameters are used in each of the ARM API function calls and what is
passed on from one function call to another.

18

Application Response Measurement AP
Getting Started

Definition of Data Type Ter minology

The API calls use the following terminol ogy to define each of the parameters:

The standard API calls use the following terminology to define each of the parameters:

int32

char*

A signed 32-hit integer.

A 32-hit pointer to a character string or data structure. Strings
must be NULL terminated unless specified otherwise. Strings are
expected to be displayed, put in reports, etc., so choose appropriate
characters.

The more advanced functionsin the APl use the following terminology to define each of the

parameters:
int64

unsigned32
unsigned64

bit8

unsignedl16

unsignedd

A signed 64-hit integer.

An unsigned 32-bit integer.

An unsigned 64-bit integer.

A byte containing 8 single-bit flags. In this document, when a bit8 is
represented as eight flags using the notation abcdef gh, a isthe most
significant bit, and h isthe least significant bit.

An unsigned 16-bit integer.

An unsigned 8-hit integer.

These formats are in the native format of the hardware platform. This accommodates the
difference between “Big-Endian” and “Little-Endian” systems, that is, the difference between
hardware architectures in which the most significant bit position is on the |eft versus the right.

19

Application Response Measurement AP
Getting Started

Testing Your Instrumentation

The following tasks are recommended for testing your instrumentation after you have included
the ARM API callsin your program.

1

20

Link tothe NULL library that is part of the ARM SDK. If the link fails, it means that you
are not linking to the correct library, or you are using incorrect names or parametersin at
least one of the ARM API calls.

Once you can link successfully, then run your application, including the callsto the API,
and verify that your application performs correctly. No testing of the API callsis done
except for the linking parameters, because the NULL library smply returns zero every time
itiscalled. Running the application isuseful to insure that you didn't inadvertently alter
the program in away that affects its basic function.

Compile the logging agent source, | ogagent . c, if you haven't already .

Link to the logging agent generated in the previous step. Run your application, including
the callsto the ARM API and verify that your application performs correctly.

Manually review the log created by the logging agent to verify that the correct parameters
are passed on each call. These parameters include transaction ids to connect start callsto
the correct transaction class, start handles to connect stop calls to the correct start calls,
and any of the optional parameters. Optional advanced parameters include correlators that
indicate the parent/child relationship between transactions and components, and metrics
about the transaction or application state.

Search thelog for error messages (identified by “ERROR” in the text) and informative
messages (identified by “INFO” in the text) after your application has run for a
considerable period of time in a simulated production environment. Upon successful
completion of thistest, you should be confident that your ARM API callsare correct. A
samplelog is provided on the next page.

Link to a performance measurement product (if available) and run the application under
typical usage scenarios. Thiswill test the entire system of application plus management
tools.

Application Response Measurement AP
Getting Started

L ogging Agent Sample Output

7:47:39.sss: arminit: Application <Appl_0> User <User_0> = Appl _id <1>

17: 47:39.sss: armgetid: Application <Appl_0> User <User_

Detail <This is transaction type 0>

17: 47:39.sss: armgetid: Application <Appl_0> User <User_

= Tran_id <1>

17: 47:39.sss: armgetid: Application <Appl_0> User <User_

Metric Field <1> Type <1> Nane <This is a Counter32 user

17: 47:39.sss: armstart: Application <Appl_0> User <User_

= Start_handl e <1>

17: 47:39.sss: armstart: Application <Appl_0> User <User_
Start _handl e <1> Metric < This is a Counter32 user netric

0> Transaction

0> Transaction

0> Transaction

metric

0> Transaction

0> Transaction

>

<Tran_0>

<Tran_0>

<Tran_0>

>

<Tran_0>

<Tran_0>

<0>

17: 47: 40. sss: arm.update: Application <Appl _0> User <User_0> Transaction <Tran_0>

Start_handl e <1> Metric < This is a Counter32 user netric

17: 47: 41. sss: arm stop: Application <Appl_0> User <User_0> Transaction <Tran_0>

Start _handl e <1> Status <0>

17: 47:41. sss: arm stop: Application <Appl_0> User <User_0> Transaction <Tran_0>

Start _handl e <1> Metric < This is a Counter32 user netric >

>

17: 47: 41.sss: armend: Application <Appl_0> User <User_0> appl_id <1>

<2>

<4>

21

Application Response Measurement AP
arm_init

arm_init

Usear m i ni t to definethe application or a unique instance of the application and user. You
must call ar m i ni t before any other ARM API calls. It is often called when an application
initializes. Thereturn code is an application/user identifier that isinput as a parameter on the
arm get i d to associate transactions with the application.

Each application needs to be identified by a unique name. 1t isyour responsibility to choose a
name that is meaningful, and that won't likely duplicate the names other devel opers will choose
for their applications. Suggestions for names would be the product name and version number
or aproject name.

There can be any number of application instances executing simultaneoudly that use the same
application name, or the same application and user names. A measurement agent may assign a
unique application identifier to each application instance, or it may assign an identifier that is
shared across identically named instances.

Syntax:

appl _id=arm. nit (appl _name, appl _user _id, fl ags, dat a, dat a_si ze)

Param eters:

appl_name (char*) The name used to identify the application. The maximum length
is 128 bytes including the NULL string terminator.

appl_user_id (char*) The name of the application user. On UNIX and Windows NT
you can set thisvalueto “*” to indicate the login user 1D of the
person running the application. The maximum length is 128
bytes including the NULL string terminator. If you do not provide
avaluefor this parameter, you must specify the NULL value (0).

flags (int32)=0 Reserved for future use. It must be set to zero.

data (char*)=0 Reserved for future use. A NULL value (0) must be used.

data_size (int32)=0 Reserved for future use. It must be set to zero.

22

Application Response Measurement AP
arm_init

Return Code:

appl_id (int32) A unique value to reference an application/user identifier. Thisid
must be passed tothear m get i d call.

Example:

ny_appl _id = arminit (“Parts Inventory Manager 1.1",/* appl name */
g /* user id */
0, 0, 0); /* reserved for future use */
Error Handling:

If thevalue returned in appl _i d islessthan zero, an error occurred in communicating with
the measurement agent. The value returned on an error can be passed toar m get i d which
will causear m get i d to function asa NULL operation. The error should be logged so
corrective action can be taken.

23

Application Response Measurement AP
arm_getid

arm_getid

Thear m get i d function call is used to assign a unique identifier to a transaction class, and
optionally to describe the format of additional data passed on ar m st art , ar m updat e,
and ar m st op calls. Thisisoften done during the initialization of your application. The
identifier returned by ar m i ni t ispassed asa parameter inar m st art callsto identify
which class of transaction is starting.

A transaction classis a description of a unit of work, such as"Check Account Balance'. Any
number of transaction classes can be defined within each application. The transaction class
name should help a person understand what function the transaction performs. The call to

arm get i d need be made only once for each transaction class each time the application is
started. A call toar m get i d can be made with the same information as a previous call, in
which case the transaction identifier (t r an_i d) that isreturned will be the same asthe
previous calls. Four types of information are tested to seeif the information isthe same. If any
of these are different, adifferentt ran_i d will be returned.

The application identifier (appl _i d).
The transaction name (t r an_nane).

The data pointer (dat a) was NULL on previous callsand isnot NULL, or it wasn't NULL
on previous callsand now it isSNULL.

If the data pointer (dat a) isnot NULL on previous calls and this call, and the contents
and size (dat a_si ze) of the buffer pointed to by the data parameter differ.

Any number of transaction classes can be defined within each application. In each application,
each transaction class may be executed any number of times. Each time atransaction classis
executed (viaar m st art), itiscalled atransaction instance. There can be any number of
instances of each transaction class executing simultaneoudly.

Syntax:

tran_i d=arm getid(appl _id,tran_nane,tran_detail, fl ags, data, data_si ze)
Param eters:

24

appl_id (int32)

tran_name (char*)

tran_detail (char*)

flags (int32)=0

data (char*)

data_size (int32)

Application Response Measurement AP
arm_getid

The unique reference to an application/user identifier returned
fromthearm.init cal. Iftheappl _i dislessthan zero,
thisarm get i d call will betreated asa NULL operation, and a
negativet r an_i d returned.

The unique name of the transaction class. It is defined for each
transaction class by the application developer. 1t must be unique
within the application (for eecharm i nit call). The
maximum length is 128 bytes including the NULL string
terminator.

Transaction detail allows a developer to provide additional
information about a transaction class. It isafree-form text area
that is set once for each appl _i d/t ran_nane pair. If the
contents of the field change on later calls using the same

appl _i d/t ran_nane pair, the new contents areignored. The
maximum length is 128 bytes including the NULL string
terminator. If notran_det ai | isassociated with this
transaction, you must specify the NULL value (0).

Reserved for future use. 1t must be set to zero.

A pointer to a buffer that describes the format of additional data
that can be passed on ar m st art , ar m updat e, and

arm st op cals. If no additional datais passed on these calls,
this parameter must be set to zero (0). See the section "Format of
Data Buffer in arm_getid" on page 46 for the detailed buffer
format.

The length in bytes of the buffer pointed to by dat a. If dat a is
set to zero (0), dat a_si ze must also be set to zero.

25

Application Response Measurement AP
arm_getid

Return Code:

tran_id (int32) The unique identifier assigned for thistransaction class. Thisid
needsto be passed onarm st art calls.

Example:

ny_tran_id = armgetid (my_appl _id, /* application name */

“Part Nunmber Query”, /* transaction name */
“Call to Server XYZ', [* transaction details */
0, /* reserved for future use */
nmy_buffer_ptr, /* metrics data/metrics meta-data */
ny_buffer_I ength); /* length of data buffer */

Error Handling:

If thevaluereturnedint r an_i d islessthan zero, an error occurred in communicating with
the measurement agent. The most likely cause is passing an invalid value for appl _i d. The
value returned on an error can be passed to ar m st art which will causearm st art to
function asaNULL operation. The error should be logged so corrective action can be taken.

26

Application Response Measurement AP
arm_start

arm_gtart

Usear m st art tomark the beginning of execution of atransaction. Each time a transaction
executes, it iscalled atransaction instance. You must call ar m st art in your application at
the beginning of each transaction instance you want monitored.

Additional information about the transaction can be provided in the optional data buffer. If no
additional information is provided, pass anull pointer. Thisinformation can be provided on
any or all of thear m st art, ar m updat e, and ar m st op calls, except correlation
information which ispassed only on ar m st art . Seethe” Advanced Topics’ section for
details on how to pass this information.

Syntax:

start_handle=arm start(tran_id, fl ags, dat a, dat a_si ze)

Param eters:

tran_id (int32) The unique identifier assigned to the transaction class. Thisisthe
id generated by ar m geti d. Ifthe tran_i d islessthan zero,
thisarm st art call will betreated asa NULL operation, and a
negativest art _handl e returned.

flags (int32)=0 Reserved for future use. It must be set to zero.

data (char*) A pointer to a buffer with additional data that can optionally be
passed. If no additional datais passed, this parameter must be set to
zero (0) Seethe section "Format of Data Buffer in arm_start,
arm_update, and arm_stop” on page 50 for the detailed buffer
format.

data_size(int32) Thelength in bytes of the buffer pointed to by the dat a parameter.

If dat a isset to zero (0), dat a_si ze must also be set to zero.

Return Code:

27

Application Response Measurement AP

arm_start
gtart_handle (int32) The unique transaction handle assigned to this instance of a
transaction. This handle must be passed on ar m st op and any
ar m updat e calls.
Example:
ny_handle = armstart (ny_tran_id, /* transaction handle */
, /* reserved for future use */
ny_buffer_ptr, /* metrics datal/correlator */

ny_buffer_length); /*length of data buffer */
Error Handling:

If thevaluereturned in st art _handl e islessthan zero, an error occurred in communicating
with the measurement agent. The most likely causeispassing an invalid valuefor t ran_i d.
The value returned on an error can be passed to ar m updat e and ar m st op calls, which
will cause these callsto function as NULL operations. The error should be logged so corrective
action can be taken.

28

Application Response Measurement AP
arm_update

arm_update

Usear m updat e for the following purposes. Thisisan optional call.

To show the progress of along transaction. Put thear m updat e call into your
application program after ar m st art and beforear m st op each time you want to send
a“heartbeat” indicating that the transaction instance is still running. Thiswould typically
be done after a fixed interval of time (such as every minute) or after afixed amount of work
is completed (such as 1000 records processed). There can be any number of ar m updat e
calsbetween anarm st art/arm st op pair. Thiscall ismost useful for long-running
transactions that take minutes or hours to complete. Another way to capture data about the
steps within a long transaction is to use component transactions (see the section “Three
Ways to Instrument within a Transaction Instance” on page 55).

ar m_updat e isalso useful for updating any of the metric or string variables passed in the
buffer pointed to by the dat a parameter (asdefinedinar m geti d). Thiscould be used
to show not only that the transaction is progressing, but also how far it has progressed. For
example, every time another 1000 records are processed, an ar m_updat e call could be
made with an updated count in the buffer.

To provide extra information about a transaction. Put the call into your application
program after ar m st art and beforear m_st op each time you want to provide special
information about a transaction instance. If there is no additional information to be
provided, pass anull pointer. There are several types of additional information that may be
useful: information about the size of the transaction (such as the number of bytesin a print
job), information about the state of the application (such as the number of threads that are
running), and diagnostic information. Thistype of information can be provided via
application-defined metrics on any or all of thearm_start, arm_update, and arm_stop calls.
See the section "Format of Data Buffer in arm_start, arm_update, and arm_stop" Format 1,
for the detailed buffer format.

To provide alarger opaque application private buffer. Information that does not
conform well to application-defined metrics (for example long diagnostic messages) may
be provided via an opaque buffer containing up to 1020 bytes of data (Format 2). Except
for the four-byte Format field the content of the buffer is entirely up to the application
developer. Because the contents of the buffer containing the information is known only to
the application devel oper, measurement agents can’t do much with the datain thisfield. A

29

Application Response Measurement AP
arm_update

typical measurement agent might provide an option to write the buffer with the information
toalog file, but thisisthe most that can be expected.

Measurement agents are not required to do anything with the information in this call.
Syntax:
error_status=arm updat e(start _handl e, fl ags, dat a, dat a_si ze)
Param eters:

start_handle (int32) The unique handle from thear m st art call that marked the
dart of thistransaction instance. Thest art _handl e must be
passed in each ar m updat e call. Many transaction instances
may be executing at the same time from this and other
applications, so this handleis essential to identify which
transaction instance is being updated. If st art _handl e isless
than zero, thisar m_updat e call will betreated asa NULL
operation, and a negative er r or _st at us returned.

flags (int32)=0 Reserved for future use. It must be set to zero.
data (char*) A pointer to a buffer with additional data that can optionally be
passed. If no additional datais passed, this parameter should be
set to zero (0).
There are two possible buffer formats:
1. If the Format field contains the value 1, then application-
defined metrics as defined in ar m_get i d can be passed.
The correlator field isnot used in thear m_updat e call.

2. If the Format field contains the value 2, then a status
message up to 1020 bytesin length may be passed in.

See the section "Format of Data Buffer in arm_start, arm_update,
and arm_stop" on page 50 for the detailed buffer formats.

30

Application Response Measurement AP
arm_update

data_size (int32) Thelength in bytes of the buffer pointed to by dat a. If dat a is
set to zero (0), dat a_si ze should also be set to zero.

Return Code:

error_status (int32) Contains a zero if successful and a negative value if an error
occurred.

Example:

status = arm.update (nmy_handl e, /* transaction handle */

, /* reserved for future use */
ny_buffer_ptr, /* data description */
ny_buffer_length); /* length of data description

*/

Error Handling:

If thevaluereturned in er r or _st at us islessthan zero, an error occurred in communicating
with the measurement agent. The most likely cause is passing an invalid value for
start _handl e. Theerror should be logged so corrective action can be taken.

31

Application Response Measurement AP

arm_stop

arm_stop

Usear m st op to mark the end of atransaction instance that was started with ar m st art .
Call ar m_st op from your application program just after each transaction instance ends.

In addition to signaling the end of the transaction instance, which allows a measurement agent
to calculate the elapsed time sincethear m st ar t , additional information about the
transaction can be provided in the optional data buffer. Thisinformation can be provided on
any or all of thear m st art, ar m updat e, and ar m st op calls.

Syntax:

error_status=arm stop(start_handl e, tran_status, fl ags, dat a, dat a_si ze)

Param eters:

start_handle (int32)

tran_status (int32)

32

The unique handle from thear m st art call that marked the
dart of thistransaction instance. st art _handl e, must be
passed in each ar m st op call. Many transaction instances may
be executing at the same time from this and other applications, so
thishandleis essential for the measurement agent to use to
identify which transaction instance is stopping. If

start _handl e islessthan zero, thisar m st op call will be
treated asa NULL operation, and anegativeer r or _st at us
returned.

The completion code of the transaction, as determined by the
application.

0 = Transaction successful (defined as ARM_GOQOD in ar m h).
Use this value when the operation completed normally and as
expected.

1 = Transaction aborted (defined as ARM_ABORT in ar m h).
Use this value when there was a fundamental failurein the system.
For example, atimeout from a communications protocol stack, or
an error when doing a database operation.

flags (int32)=0

data (char*)

data_size (int32)

Return Code:

error_status (int32)

Example:

status = armstop (ny_handl e,

Application Response Measurement AP
arm_stop

2 = Transaction failed (defined as ARM_FAILED in ar m h). Use
this value in applications where the transaction worked properly,
but no result was generated. For example, when making an airline
reservation, a server indicates no seats are available on the
requested flight. Since no reservation was made, the transaction
wasn't successful; but since the reservation system is operating
correctly, it isn't an aborted transaction either. In this case, you
might want to record the transaction as a failed transaction.

Reserved for future use. 1t must be set to zero.

A pointer to a buffer with additional data that can optionally be
passed. If no additional datais passed, this parameter should be
set to zero (0). Theformat isidentical tothear m st art call,
except the Correlator field isnot used in thear m st op call.

See the section "Format of Data Buffer in arm_start, arm_update,
and arm_stop" on page 50 for the detailed buffer format.

The length in bytes of the buffer pointed to by the dat a
parameter. If dat a isset to zero (0), dat a_si ze should also be
set to zero.

Contains a zero if successful and a negative value if an error
occurred.

transaction handl e */

/*
ARM_GOOD, /* transaction status */
0, /* reserved for future use */
buf fer_ptr, /* data description */

/*

buf fer _| engt h);

| ength of data description*/

33

Application Response Measurement AP
arm_stop

Error Handling:

If thevaluereturned in er r or _st at us islessthan zero, an error occurred in communicating

with the measurement agent. The most likely cause is passing an invalid value for
start _handl e. Theerror should be logged so corrective action can be taken.

Application Response Measurement AP
arm_end

arm_end

Usear m_end when you are finished initiating new activity using the ARM API. Itistypicaly
called when an application/user instance isterminating. Each ar m end is paired with one
arm.init tomark the end of an application.

An arm end isasignal from the application that it does not intend to issue any more

arm geti d callsusing thisappl _i d,oranyarm start callsusinganytran_id
defined using thisappl _i d. After ar m_end, the measurement agent may ignore any
armgetidor armstart cals Itisacceptabletocall ar m updat e or ar m st op for
any incompl ete transaction instances started witharm st art .

Syntax:

error_status=arm end(appl _i d, fl ags, dat a, data_si ze)

Param eters:

appl_id (int32) A unique reference to an application/user identifier returned from
thearm.ini t call. If appl _i d islessthan zero, this
arm end call will betreated asa NULL operation, and a
negative er r or _st at us returned.

flags (int32)=0 Reserved for future use. It must be set to zero.

data (char*)=0 Reserved for future use. A NULL pointer (0) must be used.

data size (int32)=0 Reserved for future use. 1t must be set to zero.

Return Code:

error_status Contains a zero if successful and a negative value if an error
occurred.
Example:
status = armend (my_appl _id, /* transaction handle */
0,0,0); /* reserved for future use */

35

Application Response Measurement AP
arm_end

Error Handling:

If thevaluereturned in er r or _st at us islessthan zero, an error occurred in communicating
with the measurement agent. The most likely cause is passing an invalid value for appl _i d.
The error should be logged so corrective action can be taken.

36

Application Response Measurement AP
Advanced Topics

Advanced Topics

The following topics provide information on more advanced implementations using the ARM
2.0 API.

Additional Data Passed in the ARM Function Calls

The following two types of additional data can now be provided viathe ARM 2.0 API.
Transaction correlation data

You can indicate that a transaction is a component of another transaction. Y ou can do
transaction correlation within one system or across multiple systems. This permits a better
understanding of the overall transaction, how much time each part of the transaction is
taking, and where problems are occurring.

Application-defined metrics

Application-defined metrics provide additional information about the transaction, such as
the number of bytes or records being processed, or about the state of the application at the
moment that the transaction is being processed, such asthe length of awork queue. This
information is useful to better understand response times, and how the application can be
tuned to perform better.

37

Application Response Measurement AP
Advanced Topics

Transaction Correlation

Many client/server transactions consist of one transaction visible to the user, and any number of
nested component transactions that are invoked by the one visible transaction. These
component transactions are the children of the parent transaction (or the child of another child
component transaction). It's very useful to know how much each component transaction
contributes to the total response time of the visible transaction. Similarly, afailure in one of
the component transactions will often lead to a failurein the visible transaction, and this
information is also very useful.

There are two facilities that the application devel oper can use to provide this information to
measurement agents that implement the ARM 2.0 API.

1. Onthesamear m st art , the application can request that the measurement agent assign
and return a correlator for thisinstance of the transaction (that is a parent correlator).
Note that the agent has the option of not providing the correlator, because it may not
support the capability (ARM Version 1.0 agents do not support correlators), or becauseit is
operating under a policy to suppress generating them.

2. When indicating the start of a child transaction with an ar m st ar t , the application can

provide a correlator provided from a parent transaction. This allows the measurement
agent to know the parent/child relationship.

38

Application Response Measurement AP
Advanced Topics

Enterprise Management
Solution
(Correlation Application)

. T correlated transaction response times
Client A:} |

Server B: } T2 |
Server C: |T3—|

Measurement Measurement Measurement
Agent Agent Agent
ARM API ARM API ARM API
start T1 stop Tl start T2 stop T2 start T3 stop T3
(Corr C1) (Corr C2)
Corr C1 Corr C2
(T1), CorrC1 | (T2), Corr C2
CLIENT A |SERVER B | SERVER C

- Figure 3 Transaction Response Time Correlation

Figure 3 shows the concept for asimple model. The principle can be extended to a modd of
arbitrary complexity.

Client A startstransaction T1, requesting a correlator viaar m st art , and is assigned
CL

Client A sendsarequest (T1) to Server B, and includes C1 in the request.

Server B startstransaction T2, passing C1 asthe parent. At the sametimeit requests a
correlator and is assigned C2.

Server B sends arequest (T2) to Server C, and includes C2 in the request.

Server C gtartstransaction T3, passing C2 asthe parent.

T3 stops, T2 stops, and T1 stops.

39

Application Response Measurement AP
Advanced Topics

If the correlation application collects all the data about these transactions, it can put together
thetotal picture, knowing that T1 isthe parent of T2 (via C1), and T2 isthe parent of T3 (via
C2). The parent/child relationship could be from a client to a server, or within one program.

An application using the ARM API need not be concerned with the format of the correlators.
Measurement agents generate correlators.

Changes Needed in the Applications for Transaction Correlation

Each application responsible for a component of the overall transaction (client and server) will
require some modifications. Applications have three responsihilities:

request correlators for transactions with one or more child transactions (viaar m st art)
by getting the appropriate flag.

send the assigned correlators to the child transaction(s) along with the data needed to
invoke the child transaction(s) itself. Thisis done by first checking that the agent assigned
acorrelator, and then sending the number of bytesin the correlator. The length is stored
by the agent in the Correlator Length field.

pass correlators received from parent transactions to the measurement agents (via
arm st ar t) by storing the correlator in the optional buffer and setting the appropriate

flag.

To enable a correlation application to analyze the correlators coming from different systems,
measurement agents follow conventions when creating correlators. Included within the
correlator isinformation identifying the system, the transaction class (from ar m_get i d), the
transaction instance (from ar m st ar t), and someflags. Theformat isflexible and
extendible so more conventions can be added as the need arises. Seethe "Appendix:
Measurement Agent Information™ on page 58 for information on the correlator format.

Correlators are passed inthear m st art callsby utilizing the dat a buffer. Thissamedat a
buffer is used to pass application-defined metrics, as described "Format of Data Buffer in
arm_start, arm_update, arm_stop" on page 50. Correlators areignored in ar m updat e and
arm st op calls.

If acorreator is being requested, the data buffer should be 256 bytes, to allow for a variable

size correlator. If acorrelator is being passed to the measurement agent, and none is requested,
the length may be truncated based on the correlator length.

40

Application Response Measurement AP
Advanced Topics

If you only wanted to do transaction correlation in your application and not provide application-
defined metrics, you can zero out the metrics (set the Flags Second Byte to zero and fill with
zeros 80 bytesfor the metrics descriptions).

NOTE: Other than the length, the correlator format need not be understood by the application
developer, asit is opague.

41

Application Response Measurement AP
Advanced Topics

Application-Defined Metrics

Application-defined metrics can tell you more about the transaction or about the state of the
application at the moment that the transaction is being processed. Threelikely uses are
envisioned as described below:

1. Specify characteritics of the transaction that will affect the response time, or that are
useful for workload planning. Examples are the number of bytesin afile transfer or print
job, or the number of records being processed. A filetransfer of 100 megabytes would
certainly be expected to take longer than a transfer of 100 kil obytes.

2. Specify information about the current state of the application. Exampleswould be the
length of a workload queue, the amount of memory allocated, or the number of threads
being used. Thisinformation is useful for adjusting workloads by shifting work between
systems, or tuning the application. If a comparison of response times versus threads shows
that congestion builds and response times increase dramatically if, for example, eight
threads are used instead of twelve, the application can be recompiled or instructed to use
more threads, which may result in a dramatic improvement in performance.

3. Specify information that can be used in diagnosing problems. Examples are error codes
returned from services invoked by the application, or information about the transaction
itself such as the part number being processed.

In setting up application-defined metrics, ar m get i d is used to define the context (or “meta-
data’) for a buffer of values that can be passed at ar m st art , ar m updat e or ar m st op.
Actual valuesarepassed inar m st art , ar m updat e and ar m st op. Thelength of the
buffer is specified in thedat a_si ze parameter.

Choosing A Data Type

The additional data provided in the data buffer uses metric and/or string fields. (See later
sections for information on the format of the data buffer.) Four general data types can be
specified for each field (counter, gauge, numeric id and string). This section provides some
suggestions about which data type to use.

Counter

42

Application Response Measurement AP
Advanced Topics

A counter should be used when it makes sense to sum up the values over an interval. Examples
are bytes printed and records written. The values can a so be averaged, maximums and
minimums (per transaction) can be calculated, and other kinds of statistical calculations can be
performed.

If acounter isused, itsinitial value must be set inthear m st art call. The difference
between thevaluein thear m st art and thear m st op (or thevaluein the last

ar m_updat e call if no metric valueis passed in ar m_st op), equals the amount attributed to
thistransaction. Similarly, the difference between successive ar m updat e calls, or from the
arm st art tothefirst ar m updat e call, or from thelast ar m updat e tothear m st op
call, equals the value for the time period between the calls.

Here are three examples of how a counter would probably be used:

The counter isset tozeroat ar m st art and to somevalue at ar m st op (or the last
ar m_updat e call). In thiscase, the application probably measured the value for this
transaction and provided that value in thear m st op call. The application always sets
thevalueto zerointhear m st art call sothevalueat ar m st op reflects both the
difference fromthear m st art value and the absolute value.

Thecounter isxlatarm start, x2atitsar m st op, x2 at thenextarm st art , and
x3 atitsar m st op. Inthiscase, the application is probably keeping arolling counter.
Perhapsthisis a server application that counts the total workload. The application smply
takes a snapshot of the counter at the start of a transaction and ancther snapshot at the end
of thetransaction. The agent determines the difference attributed to this transaction.

Thecounter isx1 at arm st art, x2 at ar m st op, x3 (not equal to x2) at the next
armstart,andx4atarm st op. Inthiscase the application is probably keeping a
rolling counter asin the previous example. But in this case the measurement represents a
value affected by other users or transaction classes, so the value often changes from one
arm st op tothenext ar m st art for the same transaction class.

Gauge
A gauge should be used instead of a counter when it is not meaningful to sum up the values

over an interval. An exampleisthe amount of memory used. If you were measuring the
amount of memory used over 20 transactionsin an interval and the average usage for each of

43

Application Response Measurement AP
Advanced Topics

these transactions was 15 MB, it does not make sense to say that 20* 15=300 MB of memory
used over theinterval. It would make senseto say that the average was 15 MB, that the median
was 12 MB, and that the standard deviation was 8 MB. These are the kinds of operations that
an agent will typically apply to gauges. The values can a so be averaged, maximums and
minimums per transaction calculated, and other kinds of statistical calculations performed.

Gauges can be provided on ar m st art , ar m updat e, and ar m st op calls. This creates
the potential for different interpretations. If several values are provided for a transaction (one
onanarm start,oneonarm updat e(s), and oneon an ar m st op), which one(s) should
be used? In order to have consistent interpretation, the following conventions apply.
Measurement agents are free to process the data in any way within these guidelines.

The maximum value for atransaction will be the largest valid value passed at any time
during the transaction.

The minimum value for a transaction will be the smallest valid value passed at any time
during the transaction.

The mean value for a transaction will be the mean of all valid values passed at any time
during the transaction. All values will be weighted equally.

The median value for atransaction will be the median of all valid values passed at any time
during the transaction. All values will be weighted equally.

Thelast value for atransaction will be the last valid value passed at any time during the
transaction.

Numeric ID

A numericid issimply a numeric value that is used as an identifier, and not as a measurement
value. Examples are message numbers and error codes. It is not meaningful to sum, average,
or manipulate these valuesin any arithmetic way. By using numeric id instead of a gauge or
counter, the application indicates this to the measurement agent. An agent could create
statistical summaries based on these values, such as generating a frequency histogram by error
code, but thisis done by counting the numbers, not by summing them or performing any other
arithmetic operation.

String

A measurement agent should process a string in the same way as a numericid. Aswith
numeric idsit is not meaningful to do arithmetic operations on a string value.

Application Response Measurement AP
Advanced Topics

Format of Data Buffer in arm_getid

Format 4 bytes | 101 (int32) (identifies "meta-data" format)
Flags 4 bytes | First Byte (bit8) =0
Theflags Second Byte (bit8)
indicate abcdef g0, wherea through g each denote the value of a
which Metric bit flag:
and String a = 1 ifthereisadescription for Metric #1, otherwisea = 0
Descriptions b=1 ?fthere?sad&ecr?pt?on for Metr?c#Z, otherw?seb =0
areinduded ¢ = 1 ifthereisadescription for Metric #3, otherwisec = 0
) d = 1 if thereisadescription for Metric #4, otherwised = 0
in the buffer. e = 1 if thereisadescription for Metric #5, otherwisee = 0
f = 1if thereisadescription for Metric #6, otherwisef = 0
g = 1 ifthereisadescription for String #1, otherwise g = 0
Third Byte (bit8) = 0
Fourth Byte (bit8) = 0
Metric #1 48 bytes | Thefirst 4 bytes (int32) define the type of data that will be
Description passed in the 8 byte field. See the description below thistable

for an explanation of the different data types.
1=ARM_Counter32

2=ARM_Counter64

3 =ARM_CntrDivr32

4 = ARM_Gauge32

5 = ARM_Gauge64

6 = ARM_GaugeDivr32
7=ARM_NumericlD32

8 = ARM_NumericlD64

9=ARM_String8

Thelast 44 bytes (char*) are the name of the metric. Thisisa
NULL terminated character string. A possible use of this

45

Application Response Measurement AP

Advanced Topics

nameisto display it along with the current value, either on a
user interface or in areport.

Metric #2 48 bytes | Same as Metric Description #1.

Description

Metric #3 48 bytes | Same as Metric Description #1.

Description

Metric #4 48 bytes | Same as Metric Description #1.

Description

Metric #5 48 bytes | Same as Metric Description #1.

Description

Metric #6 48 bytes | Same as Metric Description #1.

Description

String #1 48 bytes | Thefirst 4 bytes (int32) define the type of data that will bein
Description thefield. Only onedatatypeisvalidin thisfield.

10 = ARM_String32

Thelast 44 bytes (char*) are the name of the String #1 field.
ItisaNULL terminated character string. A possible use of
thisnameisto display it along with the current value, either
on auser interface or in areport.

46

Data Type Definitions

ARM_Counter32

ARM_Counter64

ARM_CntrDivr32

ARM_Gauge3?2

ARM_Gauigeb4

ARM_GaugeDivr32

ARM_NumericlD32

ARM_NumericlD64

Application Response Measurement AP
Advanced Topics

An unsigned32 value that increases up to the maximum value
that the counter can hold, at which point it resetsto zero and
continues counting up from zero. Except for the reset back to
zero, the value can never decrease. The counter isin thefirst
four bytes, and the second four bytes are unused.

An unsigned64 counter (see ARM_Counter32, except it’s 64
bitslong).

A combination of two unsigned32 integers, with
ARM_Counter32 in the first four bytes, and an unsigned32
divisor in the second four bytes. Thetotal valueis
ARM_CntrDivr32. The purpose of thisformat isto be able to
represent decimal values without using floating point formats.

An int32 (signed) value that can increase or decrease. The
gaugeisin thefirst four bytes, and the second four bytes are
unused.

An int64 (signed) gauge (see ARM_Gauge32, except it's 64
bitslong).

A combination of two integers, one an int32 (signed) and one
an unsigned32. ARM_Gauge32 isin thefirst four bytes, and
an unsigned32 divisor in the second four bytes. Thetotal value
isARM_GaugeDivr32. The purpose of thisformat isto be able
to represent decimal values without using floating point
formats.

An unsigned32 value that should not be used in arithmetic
operations because it is used as an identifier, not as a
measurement. For example, a message number or error code.
The numeric id isin thefirst four bytes, and the second four
bytes are unused.

An unsigned64 value that should not be used in arithmetic
operations because it is used as an identifier, not as a

47

Application Response Measurement AP

Advanced Topics

ARM_String8,

ARM_String32,

48

measurement. An example is amessage number or error code.

An 8 byte string that isnot NULL terminated. If the string is
less than eight byteslong, it must be padded with blanks. The
character set is ASCII or EBCDIC, depending on whatever is
standard for that platform. Unlike the NULL terminated
character strings passed in various placesin the AP, these
strings cannot be reliably converted to other code pages, soit is
suggested you use only the common charactersin the first 128
characters of the Latin code pages. Seethe
"Internationalization" section on page 56 for more
information..

A 32 byte string that is not NULL terminated. If the string is
less than 32 bytes long, it must be padded with blanks. The
character set is ASCII or EBCDIC, depending on whatever is
standard on that platform. Unlike the NULL terminated
character strings passed in various placesin the AP, these
strings cannot be reliably converted to other code pages, soit is
suggested you use only the common charactersin the first 128
characters of the Latin code pages. See the
"Internationalization" section on page 56 for more information.

Application Response Measurement AP
Advanced Topics

Format of Data Buffer in arm_start, arm_update, arm_stop

Format 1
Format 4 bytes | 1(int32)
(2 isaspecial format for ar m_updat e, see the table on page 54)
Flags 4 bytes | First Byte (bit8) (Only valid for arm st art . Ignored on
arm updat e and ar m st op.)
The flags
indicate abcd0000, wherea, b, ¢, d each denote the value of a bit flag.
which fidlds a, b, d are set by the application. c is set by the measurement
areincluded agent.
in the . L _
buffer. a = 1 if theapplication ispassing the correlator from a parent

transaction in the Correlator field; otherwisea = 0.

b = 1 if theapplication isrequesting that the agent generate a
correlator for the transaction (the one indicated by this

arm st art command); otherwiseb = 0. If acorreator is
being requested, the data buffer should be 256 bytes, to allow for a
variable size correlator.

¢ = 1 if theagentisreturning a correlator in the Correlator field.
When set, the valuein the Correlator field overlays any previous
value. Thisflag will only be set when three conditions are met,
otherwise c=0:

1. Theapplication hasset bitb = 1.

2. The agent supports this function (agents that only support
version 1.0 of the ARM API do not).

3. Theagent isrunning in a mode where the generation of
correlatorsis enabled (that is, there might be an
installation policy to disable the generation of correlators,
either temporarily or permanently).

If thishit isnot set to 1, thereisno corrdator, and therefore the

49

Application Response Measurement AP
Advanced Topics

application should not forward the contents of the Correlator field.

d = 1 if theapplication isrequesting that the agent trace this
transaction. This might be done when a dummy test transaction is
being executed, or when an error has occurred. Each agent can
choose how and if it should honor the request, and administrators
who configure the agent may establish the policy.

Second Byte (bit8)
abcdef g0, where a through g each denote the value of a bit flag:

= 1 if avalueispassed in Metric #1, otherwisea =
= 1 if avalueispassed in Metric #2, otherwiseb =
1 if avalueispassed in Metric #3, otherwisec =
= 1 if avalueispassed in Metric #4, otherwised =
= 1 if avalueispassed in Metric #5, otherwisee =
= 1 if avalueispassed in Metric #6, otherwisef =
g = lifavalueispassedin String #1, otherwiseg = 0

- ®© o O T QO
1
O O O o o o

It is perfectly permissible for an application to pass none or some
of the metrics on each call, and to change which metrics are passed
from call to call. Thisholdstruefor arm st art, ar m updat e,
and ar m st op calls. The onerequirement that must be adhered
toisthat the meaning and position of the field must have been
defined with thear m get i d call. (seethe section "Format of
Data Buffer in arm_getid").

Third Byte (bit8) = 0

Fourth Byte (bit8) = 0

Metric #1

8 bytes

The metric fields are used by the application to pass useful
information about the transaction or the state of the application to
the measurement agent. Thefield contains one or two integers, or
adtring variable. The use of the field and the format of the field
are determined by the buffer passed on thear m get i d call (see
the section "Format of Data Buffer in arm_getid").

50

Application Response Measurement AP
Advanced Topics

See the sections “Choosing A Data Type” on page 42 and "Data
Type Definitions" on page 48 for more information.

Metric #2 8bytes | SameasMelric #1.

Metric #3 8bytes | SameasMelric #1.

Metric #4 8bytes | Sameas Melric #1.

Metric #5 8bytes | SameasMelric #1.

Metric #6 8bytes | Sameas Melric #1.

String #1 32 bytes | A string variable of up to 32 characters. Thestring isnot NULL
terminated, and is padded with blanksif it islessthan 32
characters. Any information can be included in the string.
Examples would be a part number being processed, or an error
code.

Correlator Thefield has two different uses depending on whether it is passed

on the call from the application to the measurement agent, or if it
is passed in the return from the agent:

1. Theapplication can passin the correlator from a parent
transaction to the agent. This allows the agent to correlate the
parent transaction to the component transaction being started
with thisarm_start call.

2. Theagent can return a correlator for the transaction being
started by thisarm_start call. The application could then pass
this correlator to applications that it invokes, and they in turn
could passit as the parent correlator in arm_start calls that
they make.

If the correlator returned bit is set (Flags First Byte c=1), the
application can ether pass the entire 168 byte correlator. Or if you
want to optimize, the application can choose to read the correl ator
length field and only pass the number of bytes containing data,
starting with the 2 bytes of the correlator length.

51

Application Response Measurement AP
Advanced Topics

Length2
bytes

Data

0-166
bytes

See "Transaction Correlation” on page 38 for more information on
correlating transactions. See the "Appendix: Measurement Agent
Information” on page 58 for more information on the content of
the correlator.

The Correlator length field (unsigned 16) specifies the length of a
correlator (including thisfield) generated by a measurement agent
(when bit ¢ isset in thefirst Flags byte).

If thisvalueis zero, it means that the agent is not returning a
correlator, and therefore there isn’t any reason to pass this
correlator on to other parts of the application (or serversthat it
calls).

Thisfield is considered a part of the correlator and must be
included in the forwarded correlator data.

The Correlator datafield is used to show the parent/child
relationship between transactions. (Note: the application
instrumenter need not understand the correlator format asit is

"opaque").

52

Application Response Measurement AP
Advanced Topics

Format 2

Inthear m updat e callswith a Format field containing the value 2, the buffer may have the
following format:

Format 4 bytes 2 (int32)

Data 1020 bytes Containsthe data. The length of the buffer is determined by the
(maximum) | dat a_si ze parameter. Theformat of the datais not defined,
but it is suggested that the data be formatted as plain-text
characters so it can be understood without requiring a special
formatting program. The agent cannot summarize the data over an
interval, it must be treated astrace data. One suggestion isto
format all information as plain-text characters so it can be read by
a person without a special formatting program.

Note that because the datain an opaque buffer cannot be
summarized, and processing by the agent may consist of logging
the datato atrace file, many calls at a high frequency could result
in aloss of data or a lowing down of the system, most likely due
to an excessive amount of file 1/O. Thereforeit is recommended
that the call be used only in special situations. NULL termination
isnot required.

53

Application Response Measurement AP
Advanced Topics

Three Ways to Instrument within a Transaction Instance

There are three methodol ogies for instrumenting within a transaction instance. Thefirst two
are useful when the transaction is within one application; the last one is useful when the
transaction is distributed across applications or systems.

1

Instrument atransaction using ar m updat e asa“heartbeat”, when it is an operation that
takes a long time to complete (several minutes or hours) and you want to show the overall
progress of the transaction in numeric form.

If these transactions have different steps associated with processing each record, you may
want to instrument these steps with component transactions (as described below), or use
repeated callsto ar m updat e to show the overall progress of the transaction. For
example, the transaction may process a million records. A call toar m updat e could be
made for every 1000 records or every minute of processing. This could show the progress
of the transaction based on the number of timesar m updat e was called or with one or
more application-defined metrics.

Instrument a transaction using component transactions when it is a long transaction that
has many steps. A transaction can be defined for the overall transaction and then nested
transactions can be defined for each of the steps. A step might represent a single discrete
operation, or it could represent alarge number of operations, such as copying 1000 files.
This allows for the monitoring of each of the steps as well as the overall transaction.

For example, step 1 takes about 20 minutes, step 2 takes about 40 minutes, and step 3 takes
about 10 minutes. Each step can have a defined transaction as well as the overall
transaction. So you would define 3 component transactions monitoring each step, plus one
transaction that monitors the overall transaction.

Instrument using transaction correlation when the transaction has components that span
several applications or systems. This approach is more complex than the previous two as it
requires changesto all the applicationsinvolved in processing components of the
transaction, but it isthe most accurate way to track transaction response time spanning
systems.

Application Response Measurement AP
Advanced Topics

Internationalization

The ARM API is designed to enable applications to use native code pages and languages, and
for measurement agents to be able to support many different languages. Users of agents should
contact the providers to see if the agent supports the needed code pages and languages.

The ARM API supports any code page as long as no characters are encoded with binary zero
bytes (octets). Thisis because most strings are passed as NULL terminated strings, and the
NULL terminator character isabinary zero byte. If abinary zero byte is encountered before the
end of the string, the agent would interpret the zero byte as the NULL terminator and truncate
the string. Most code pages meet this requirement.

These are code pages that contain binary zero bytes, but there are alternate ways to encode the
characters. A well-known exampleisthe Unicode standard. In its native format using 16 bit
characters (UTC-2), there are binary zero bytes. However, the UTF-8 encoding of the same
Unicode characters does not contain binary zero bytes, and this format is entirely compatible
with the ARM API.

Agentsthat support native languages will often use the following technique. When the
application links to the agent it links to a part of the agent that executes in the same process
space as the application. Typically thissmall part of the agent communicates with the main
part of the agent across an inter-process communications (IPC) channel. The small part of the
agent that executes in the same process as the application can issue an operating system call to
find out what code page and language the processisusing. It can then pass this information to
the main part of the agent, and the main part of the agent can convert from the native code
page as necessary.

There are the following three restrictions on the use of native languages.

The strings can contain no binary zero bytes except for the NULL terminator character (as
was mentioned above).

All the strings should be encoded using the same code page and language information as
the process that executesthear m i ni t call. Thisalsoimpliesthat the code page and
language information should not change after thear m i ni t call.

This technique does not apply to any string data passed within the optional buffers on
arm start,arm updat e, and ar m st op. Thisisbecause these strings are not null

55

Application Response Measurement AP
Advanced Topics

56

terminated (note that it does apply to the metric descriptions passed within the optional
buffer on ar m get i d). Further, these strings are often about things that are external to
the program, such as a part number or an error code, so the requirement to use the same
code page and language information as the process is unacceptable. The application
developer is strongly recommended to restrict these strings to the first 128 bytes of the
standard Latin code pages for ASCII and EBCDIC (depending on the platform).

Application Response Measurement AP
Appendix: Measurement Agent I nformation

Appendix: Measurement Agent Information

This appendix contains information provided for measurement agent implementers as opposed
to ARM application instrumenters. For instrumentersit is provided as reference only, the
correlator is*opaque’ from an application instrumenter’ s perspective.

The agents provide the correlators, and within the correlator they provide information to
uniquely identify agents. To enable an enterprise management solution (correlation
application) to analyze the correlators coming from different systemsin a heterogeneous
environment, agents need to follow some conventions when creating correlators.

The following section documents a set of semantics for measurement agentsto usein
formatting the correlator and agent identifiers.

The correlator passed on ar m st art callsissent across systems, so it isalways in network
byte order. Network byte order is a standard described as follows:

Buffer word/byte/bit Format

| byte O | byte 1 | byte 2 | byte 3 |

0 7 8 15 5.6 22 213; 31

57

Application Response Measurement AP
Appendix: Measurement Agent I nformation

For mat of the Correlator

Correlators provided by agents and passed on thear m st art commands have the following

format.

2 bytes

Length of the Correlator (unsigned16)

If thisvalueis zero, it means that the measurement agent is not returning a
correlator, and therefore there isn’t any reason to pass this correlator on to
other parts of the application (or serversthat it calls).

A zero length provides another safeguard for agents. If an application passes
anull correlator anyway, when any agent receives this correlator as the parent
correlator for another transaction, the agent can see that the datain the
correlator isinvalid and ignore it, regardless of whether the “parent
correlator” bit (Flags First Byte a) isset inthear m st art buffer.

1 byte

Correlator format (unsigned8)=1

Only one format is defined at this point, but others could be added in the
future.

1 byte

Flags
First Byte (bit8)
ab000000, wherea and b arehit flags:

a = 1 if atrace of thistransaction and any nested component transactionsis
requested by the agent.

b = 1 if atrace of thistransaction and any nested component transactionsis
requested by the application. The application requests this by setting the “d”
bit (in abcdef gh notation) in thefirst flag byte in the buffer passed on

arm st art. Theagent will decide whether to set this bit, based on its
capabilities and how it is configured.

58

Application Response Measurement AP
Appendix: Measurement Agent I nformation

The “trace this correlator” flag isaway to cause agents to trace and/or
monitor atransaction and all component transactions associated with the
transaction without having to trace or monitor all transactions on a system, or
without requiring a complicated infrastructure to control tracing and
monitoring. (Note that this does not preclude other ways to control agents,
nor isthisintended to be a final and comprehensive solution. It isintended
that thiswill be used in addition to other approaches).

When an agent builds a correlator, it isfreeto turn on these flags. The agent
might do thisif an application has been experiencing unsatisfactory response
times. Any agentsthat receive this correlator asthe parent correlator for a
component transaction will also see the flag, and they in turn could turn on
theflag in any correlators they generate. This process could repest, resulting
in the passing of the trace flag through all the transactions of interest. All the
agents might be configured to trace only the few transactions with this flag
on, and thiswould both capture the information needed to diagnose the
transaction problem, and avoid overloading the agents and their systems with
attempts to trace all transactions.

The reason there are separate flags for traces requested by an agent and an
application isto provide additional flexibility in how policies for monitoring
and tracing are implemented. It might be common for an installation to trace
transactions only when requested by agents (based on how the administrator
has configured the agents), because then the administrator would control all
tracing. On the other hand, permitting the application to highlight when a
transaction is specia has advantages.

2 bytes

Format of the Address field (unsigned16)

The following formats are defined:

0 =reserved

1=1Pv4

2 = IPV4+port number
3=I1Pv6

4 = [Pv6+port number

59

Application Response Measurement AP
Appendix: Measurement Agent I nformation

5=SNA
6=X.25
7:32767 = reserved

Thislist will be expanded as new requirements arise. Theintent isto provide
avalue for any common addressing format as soon as the need is identified.

32768-65535 = undefined and available for agent implementersto use. There
are no semantics associated with the address format. It will be an unusual
situation where a new format is needed, but this provides a solution if thisis
needed. The preferred approach isto get a new format defined that isin the
0-32767 range. Thereisarisk that two different agent devel opers will choose
the sameid, but thisrisk is small.

2 bytes

Vendor ID (unsigned16)

The vendor ID is away to identify who built the agent. Combining this
information with the Agent Version field will provide away for a
management application to know what kind of agent generated a correlator.
A management application may contain specialized functions or logic that
only works with the agents from a particular vendor and/or supporting
particular functions or interfaces. By putting these two fieldsin the
correlator, a management application has a way to know whether the agent
that generated the correlator has some of these specialized capahilities. For
example:

The management application wants to contact the agent to know the name of
the application, user, and transaction class running this transaction instance.
Although the address of the agent is known from the Address field, the
protocol that one uses to interface to the agent could be anything. The
management application may know how to access several different agents,
and could use these values to determine if the correlator came from an agent
that it knows how to access.

Alternately an agent has a special capahility. For example, maybe version 3.3
of avendor’s agent analyzes data in a particular way, but previous versions do
not. The management application could use thisfield to see what are the
agent’s capabilities.

60

Application Response Measurement AP
Appendix: Measurement Agent I nformation

In order to minimize the possibility of two vendors using the same vendor ID,
the value should be taken from the list of enterprise identifiers from the
Internet Assigned Numbers Authority (IANA). Thislist was created for
vendors who have SNMP agents. Although the ARM API specification does
not require or endorse SNMP, it's likely that most or all the organizations that
will create an ARM agent will have at least one enterprise ID assigned. The
list of enterprise IDs can be found at:

ftp://ftp.isi.edu/in-notes/iana/assi gnments/enterprise-numbers

For organizations that don't have an enterprise identifier assigned by the
IANA, the values between 32768-65535 are free for agent devel opersto use.
There are no semantics associated with theseids. It is expected that most or
all agent developerswill have aformally assigned vendor id, and it will be an
unusual situation where another id is needed, but this provides a solution if
thisisneeded. Thereisarisk that two different agent devel opers will choose
the sameid, but thisrisk isvery small.

2 bytes Agent Version (unsigned16)
The Agent Version is used to distinguish between different versions of an
agent, and will be most useful when the capabilities and/or interfaces of an
agent change from one release to another. 1t will also be useful to distinguish
between different agents from the same vendor. Each vendor isresponsible
for avoiding having multiple agents with different capabilities using the same
Agent Version value.
Refer to the explanation in the Vendor 1D field above to understand how to
use thisfield.

2 bytes Agent Instance (unsigned16)

Each agent assigns transaction ids and start handles. Typically there will be
one agent on each system, and this one agent is responsible for making sure
that there aren’t any duplicate ids or handles. From one system to ancther,
however, duplicateids and handleswill be common, i.e.,, an id/handle
combination assigned on system X will also be assigned on system Y.

One of the main purposes of the Address, Vendor ID, and Agent Version

61

Application Response Measurement AP
Appendix: Measurement Agent I nformation

fieldsisto tell a management application how to contact an agent in order to
trandate the transaction id and start handle into the names of the application,
user, and transaction class, and the instance of the transaction. Aslong as
thereisonly one set of ids and handles stored at that address, all the required
information isthere. However, if the addressis not the address of an
individual agent, but rather is the address of a directory that contains
information about multiple agents, thereisn’'t sufficient information, because
the id/handle combinations can be duplicated.

The purpose of the Agent Instance field is to provide a way to identify which
agent generated a correlator, even if the correlation data from multiple agents
isavailable at the address specified in the Address field.

4 bytes Transaction instance (st ar t _handl e returned fromanarm start)
4 bytes Transaction classID (t r an_i d returned from an ar m get i d)

2 bytes Length of the addressfield (unsigned16)

Maximum Address

146 bytes

Thisfield isthe address of the agent. More precisdly, it isthe addressthat a
management application can contact in order to have the Transaction class ID
mapped to the names of an application, user, and transaction class, and to get
information about the transaction instance, or aggregated data about the
transaction class (or any other data).

The maximum length of thisfield is determined by an overall limit of 168
bytes for the correlator. In the correlator format described here, the
maximum address length is 146 bytes. In actual practice, it is expected to be
no more than 20 bytes for most implementations. 1f new correlator formats
are added in the future, the maximum size of thisfield could change. The
maximum correlator size of 168 bytes will not change.

Correlators are passed on ar m st art callsas part of the buffer pointed to
by the dat a pointer. The maximum size of the buffer is 256 bytes, of which
88 bytes are used for other fields, leaving 168 bytes for the correlator. An
application should allocate space for the full 256 bytes when making the

62

Application Response Measurement AP
Appendix: Measurement Agent I nformation

arm st art call, but can then usethe Correlator Length field to determine
how long the correlator really is, and only forward that much data to other
cooperating applications.

Following are the formats that have been defined so far. Thedatais stored in
network standard byte order, in which integers are sent most significant byte
first, unless otherwise indicated. Thislist is not intended to be exhaustive,
and will be extended whenever a new agent implementation requires a new
format.

0 = reserved
1=1Pv4
Bytes0:3 4 byte IP address
2 = IPV4+port number
Bytes0:3 4 byte IP address
Bytes4:5 2 byte IP port number
3=1Pv6
Bytes 0:15 16 byte IP address
4 = [Pv6+port number
Bytes 0:15 16 byte IP address
Bytes 16:17 2 byte IP port number
5=SNA
Bytes0:7 EBCDIC-encoded network 1D

Bytes8:15 EBCDIC-encoded network accessible unit
(control point or LU)

6=X.25
Bytes0:15 The X.25 network address (also referred to as an
X.121 address). Thisisupto 16 ASCII character digits ranging
from 0-9. Thelength is known from the "Length of the address
field". An agent running over an X.25 link with the IP
configured may choose to use this format or the IP format. This
format must be used when IP is not configured above an X.25
link.

7:32767 = reserved

32768-65535 = undefined and available for agent implementersto

63

Application Response Measurement AP
Appendix: Measurement Agent I nformation

use

Application Response Measurement AP
Examples

Examples

These examples are shown for their ssimplicity. There are more elegant ways to program the
same tasks, but the examples demonstrate the ARM API function calls. These sample
programs and sample programs for languages other than C are also available on the ARM AP
CD-ROM and the ARM Web Site mentioned earlier in this book under “For Your Information”
on pageiv.

arm.h Header File

fndef ARM H | NCLUCED
#def i ne ARM H | NCLUCED

/********************~k*******~k*******~k*******~k*******************************/

/* armh - ARMAP Definitions */

/********************~k*******~k*******~k*******~k*******************************/

#i ncl ude <sys/types. h> /* Ctypes definitions */
/* Type definitions for various field sizes */

/* 64-bit integer conpiler support */
/* */
/* If atype declaration supporting 64 bit integer arithnatic is defined */
/* for the target platformand conpiler, the "INI64" #define shoul d be set */

/* to that type declaration. Eg., */
/* */
/* #define INT64 1 ong | ong */
/* */
/* 1f 64 bit arithmatic is not supported on the target platformor */
/* conpiler, renove (or coment out) the "INI64" #define and structures */
/* of two 32 bit values will be defined for the 64 bit fields. */
/~k

#define INT64 | ong | ong

*/

typedef unsigned char bhit8 ;
typedef short int16 ;

typedef long int32 ;

typedef unsigned char unsigneds ;
typedef unsigned short unsi gned16 ;

65

Application Response Measurement AP
Examples

typedef unsigned long unsigned32 ;

#ifdef | NT64
typedef INT64 int64 ;
typedef unsi gned | NT64 unsi gned64 ;

#el se

typedef struct int64 {
int32 upper;
int32 |ower;

} int64 ;

typedef struct unsigned64 {
unsi gned32 upper;
unsi gned32 | ower;

} unsi gned64 ;

#endi f

[*** Synbol definitions xxk |
/* BEnuneration of transaction status conpl etion codes */
enumarmtran status_e { ARMGID = 0, ARMABCRT, ARM FAILED };
/* Enuneration of user data fornats */
enumarmuserdata e { ARMFornat1l = 1, ARM Format 2, ARM Fornat 101 = 101 };
/* Bnuneration of netric types */
typedef enumarmnetric_type_e {
ARM Gounter32 = 1, ARM Gounter64, ARM ntr D vr32,
ARM Gauge32, ARM Gauge64, ARM GaugeDi vr 32, ARM Nuneri cl D32,
ARM Nuneri cl D64, ARM String8, ARM Sring32,
ARM Met ri cTypeLast
} armnetric_type_e;
[*** Data definitions *rxf
/* User netric structures */
typedef struct armentrdivr32_t { /* Qounter32 + Ovisor32 */
unsi gned32 count ;
unsi gned32 di vi sor;

} armentrdivr32_t;

typedef struct armgaugedi vr32_t { /* Gauge32 + Dvisor32 */
int32 gauge;

66

unsi gned32 di vi sor;
} armogaugedi vr32_t;

Application Response Measurement AP
Examples

/* Union of user ARMFornatl netric types */

typedef union armuser_netricl u {

unsi gned32 count er 32; /*
unsi gnedé4 count er 64; /*
armentrdivr32_t cntrdivr32; /*
int32 gauge32; /*
int64 gauge64; /*
armgaugedi vr32_t gaugedi vr32; /*
unsi gned32 nuneri ci d32; /*
unsi gned64 nuneri ci d64; /*
char string8[8]; /*

} armuser_netricl u;
/* Application viewof correlator */

typedef struct armapp _correlator_t {
int16 | engt h; /*
char agent _dat a[166] ; /*
} armapp_correlator_t;

Qounter32 */

Qounter64 */

Qounter32 + Dvisor32 */
Gauge32 */

Gaugebd */

Gauge32 + Dvisor32 */
Nunericl D82 */

Nunericl D64 */

Sring8 */

Length of the correlator */
Agent-specific data fields */

/* ser metrics ARMFormat 1 structure definition */

typedef struct armuser_datal t {
int32 format;
bit8 flags[4];
armuser_netricl u netric[6];
char string32[32];
armapp_correl ator_t correl ator;
} armuser_datal t;

/* Version/format id (userdata e) */
/* Hags for netrics' presence */
/* User netrics */

/* 32 byte non-terminated string */
/* Correlator */

/* ser metrics ARMFormat2 structure definition */

typedef struct armuser_data2 t {
int32 format; /*
char string1020[1020] ; / *
} armuser_data2 t;

Version/format id (userdata e) */

1020 byte opaque blob */

/* Wer netric neta-data for ARMFornat101 structure */

typedef struct armuser_netalOl t {
int32 type; /*
char nane[44] ; /*
} armuser_netalOl t;

Type of nmetric (armuser_netric_e) */
NULL-termnated string <= 44 char */

67

Application Response Measurement AP
Examples

/* User neta-data ARM Fornat 101 structure definition */

typedef struct armuser_datalOl t {

int32 fornat; /* Version/format id (userdata e) */
bit8 flags[4]; /* Hags for which fields are present */
armuser_netalOl t neta[7]; /* Wer netrics neta-data */

} armuser_datalOl t;
/* Hag bit definitions (within bit8 fields) */

/* flags[O] in armuser_datal t passed in armstart */

#define ARM CorrPar_f 0x80 /* Correlator fromparent */
#define ARM CorrReq_f 0x40 /* Request correlator generation */
#define ARM GorrGen_f 0x20 /* Newcorrelator generated in data */

#defi ne ARM TraceReq_f 0x10 /* ser trace request */

/* flags[1] in armuser_datalOl t passed in armget_id and */
/* flags[1] in armuser_datal t passed in armstart, armupdate and armend */

#define ARMMetricl f 0x80 /* Metric 1 present */
#define ARM Metric2 f 0x40 /* Metric 2 present */
#define ARMMetric3 f 0x20 /* Metric 3 present */
#define ARM Metrica f 0x10 /* Metric 4 present */
#define ARM Metrich f 0x08 /* Metric 5 present */
#define ARM Metric6_f 0x04 /* Metric 6 present */
#define ARMA | Metrics_f oxfc /* Metrics 1 - 6 present */
#define ARM Sringl f 0x02 /* Sring 1 present */

#f defined _WN32
#i ncl ude <wi ndows. h>
#defi ne ARM AP WNAPI
#elif defined _C82
#defi ne ARM APl _Pascal
#elif defined _OR216
#define armdata t char _far
#define armptr_t char _far
#define ARM AP _far _pascal
#elif defined "WNL6 || _WNDO/S
#i ncl ude <wi ndows. h>
typedef BOOL (FAR PASCAL _export * FPSTRB) (LPSTR LPMAD);
#define armdata t char FAR
#define armptr_t char FAR
#defi ne ARM AP WNAPI
#else [* unix */
#defi ne ARM APl
#endi f

68

Application Response Measurement AP
Examples

#i fdef __cpl uspl us
extern "C' {

#endif /* _ cplusplus */
#i f def _PROTOTYPES

[**x* Functi on prot ot ypes xxk |

extern int32 ARMAPI arminit(

char* appl _nane, /* application nane */
char* appl _user_id, /* Nane of the application user */
int32 fl ags, /* Reserved = 0 */
char* dat a, /* Reserved = NULL */
int32 dat a_si ze); /* Reserved = 0 */

extern int32 ARMAPI armageti d(

int32 appl _i d, /* application handl e */
char* tran_nane, /* transaction nane */
char* tran_detail, /* transaction additional info */
int32 fl ags, /* Reserved = 0 */
char* dat a, /* format definition of user netrics */
int32 dat a_si ze); /* length of data buffer */

extern int32 ARMAPI armstart(

int32 tran_id, /* transaction nane identifier */
int32 fl ags, /* Reserved =0 */
char* dat a, /* user netrics data */
int32 dat a_size); /* length of data buffer */

extern int32 ARMAP armupdat e(

int32 start_handl e, /* uni que transaction handl e */
int32 fl ags, /* Reserved = 0 */
char* dat a, /* user netrics data */
int32 dat a_si ze); /* length of data buffer */

extern int32 ARMAPI arm st op(

int32 start_handl e, /* uni que transaction handl e */
int32 tran_status, /* Good=0, Abort=1, Failed=2 */
int32 fl ags, /* Reserved = 0 */
char* dat a, /* user netrics data */
int32 dat a_si ze); /* length of data buffer */

extern int32 ARMAP armend(

int32 appl _i d, /* application id */
int32 fl ags, /* Reserved = 0 */
char* dat a, /* Reserved = NULL */
int32 dat a_si ze); /* Reserved = 0 */

69

Application Response Measurement AP
Examples

#el se /* _PROTOTYPES */

extern int32 ARMAP arminit();
extern int32 ARM AP armagetid();
extern int32 ARM AP armstart();
extern int32 ARM APl arm updat e() ;
extern int32 ARM AP armstop();
extern int32 ARM AP armend();

#endi f /* _PROTOTYPES */

#i fdef __cpl uspl us

}
#endif /* __cplusplus */

/* Type definitions for conpatibility wth version 1.0 of the ARMAP */

typedef int32 armappl _idt;
typedef int32 armtran_id t;
typedef int32 armstart_handl e t;

typedef unsigned32 armflag_t;

typedef char armdata_t;
typedef int32 armdata_sz_t;
typedef char armptr_t;
typedef int32 armret_stat_t;
typedef int32 armstatus_t;

#endif /* ARMH | NCLUDED */

70

Application Response Measurement AP
Examples

C/C++ (all platforms) Sample 1

Sample 1 uses standard ARM API calls, not advanced functions.

/***/

/* sanpl el.c */
/* */
/* This program provides exanpl es of howto use the features provi ded by */
/* version 1.0 and 2.0 of the ARMAP . */
/* */

/***/

#i ncl ude <stdio. h>
#i ncl ude "armh"

int32 appl _id = -1, /* Define an indentifer for the application id */

int32 sinple tranid = -1; /* Define a unique identifier for each */
int32 long_tranid 1 =-1; /* TRANSACTICN *|
int32 long_tran_id 2 = -1;
int32 sub_tran_id_1 = -1,
int32 sub_tran_id_2 = -1,

/***/

/* init */
/***/

void init()
{
appl _id=arminit("ARMsanpl e prograni, /* application nane */
e, /* use default user */
0,0,0);

sinple_tran_id = armgeti d(appl _id,
"Snple_transaction 1", /* transacti on name */
"First Transaction in Sanple progrant,
0,0,0);
if (sinple_tran_id < 0)
printf("Snple_transaction_1 is not registered.\n");

long_tran_id_1 = armgetid(appl _id,
"Long_transaction_1", /* transacti on name */
"Along transaction using armupdate",
0,0,0);

if (long_tran_id_1 < 0)

71

Application Response Measurement AP
Examples

printf("Long transaction_1 is not registered.\n");

long_tran_id 2 = armgetid(appl _id,
"Long_transaction_2", /* transacti on name */
"Along transaction using sub transactions",
0,0,0);
if (long_tran_id_2 < 0)
printf("Long transaction 2 is not registered.\n");

sub_tran_id_1 = armgetid(appl _id,
"Sub tranl of _long tran 2", /* transacti on name */
" Subtransaction 1 of Long_ trans2",
0,0,0);
if (sub_tran_id 1 < 0)
printf("Sub_tran of _long tran 2 is not registered.\n");

sub_tran_id_2 = armgetid(appl _id,
"Sub tran2_of _long tran 2", /* transacti on name */
" Subt ransaction 2 of Long_trans2",
0,0,0);
if (sub_tran_id 2 < 0)
printf("Sub_tran of _long tran 2 is not registered.\n");

Y% init ¥/

/**************************************k**************************************/

/* sinple_transl */
/**************************************k**************************************/

voi d sinpl e_transl()

{

int32 tran_handl e;

tran_handle = armstart(sinple_tran_id, /* transaction id fromarmgetid */
0,0,0);

/***k*,

/* Performactual transaction processing here*/
/***k*,

armstop(tran_handl e, /* transaction handle fromarmstart */
ARM GO, /* successful conpletion define =0 */
0,0,0);

return;

} /* sinple_transl */

/**************************************k**************************************/

72

Application Response Measurement AP
Examples

/* 1ong_trans_usi ng_updat e */
/* */
/* armupdat e can show the progress of an iterative process */

/***/

voi d | ong_t rans_usi ng_updat e()

{

#def i ne MAX_GOUNT 1000000
#defi ne UPDATE GOUNT 100000 /* call update every 100,000 iterations */

int32 tran_handl e;
int i;

tran_handle = armstart(long_tran id_1, /* transaction id fromarmgetid */
0,0,0);

for (i=1;i<=MAX_CONT;i++)

{
/* your processing goes here */
if (i Y%PDATE GONT == 0)
armupdat e(tran_handl e, /* update based on UPDATE CONT */
0,0,0);
}
armstop(tran_handl e, /* transaction handle fromarmstart */
ARM GO, /* successful conpletion define =0 */
0,0,0);
return;

} /* long_trans_using_update */

/***/
/* long_trans_usi ng_sub_trans */
/* */
/* Sub-transactions can show the progress of the steps of a long transaction.*/
/***/

voi d long_trans_usi ng_sub_trans()

{
int32 tran_handl e;
int32 sub_tran handl el;
int32 sub_tran handl e2;

/* record the overall transaction processing (optional) */

73

Application Response Measurement AP
Examples

tran_handle = armstart(long_tran id 2, /* transaction id fromarmgetid */
0,0,0);

/* start recording the first step of the long transaction */
sub_tran_handl el = armstart(sub_tran_id 1,
0,0,0);

/**************************************/

/* Process step 1 on this transaction */
/**************************************/

/* record the conpletion of the first step */

arm st op(sub_t ran_handl el, /* transaction handl e fromarmstart */
ARM GOD, /* successful conpletion define = 0 */
0,0,0);

/* start recording the second step of the long transaction */
sub_tran_handl e2 = armstart(sub_tran_id 2,
0,0,0);

/**************************************/

/* Process step 2 on this transaction */
/**************************************/

/* record the conpl etion of the second step */

arm st op(sub_t ran_handl e2, /* transaction handl e fromarmstart */
ARM GO, /* successful conpletion define = 0 */
0,0,0);

/* record the conpl etion of the overall transaction */

armstop(tran_handl e, /* transaction handle fromarmstart */
ARM GO, /* successful conpletion define = 0 */
0,0,0);

return;

} /* long_trans_using_sub trans */

/***/

/* nain */
/***/

nai n()

{
int continue_processing = 1;

initQ);

74

Application Response Measurement AP
Examples

whi | e (continue_processi ng)

{
sinpl e_transi();
I ong_t rans_usi ng_updat e() ;
long_trans_usi ng_sub_trans();
conti nue_processing = 0;
}
arm end(appl _i d, /* applicationid fromarminit */
0,0,0);
return(0);

75

Application Response Measurement AP
Examples

C/C++ (all platforms) Sample 2

Sample 2 uses the advanced functions of application-defined metrics and transaction
correlation.

/********************~k*******~k**/

/* Sanpl e2.c */
/* */
/* This program provi des exanpl es of howto use two of the new features */
/* provided by version 2.0 of the ARMAP, user defined netrics and */
/* correlation. For sinplicity, this sanpl e programdoes not performany */
/* error checki ng. */

/********************~k*******~k**/

#i ncl ude <stdio. h>
#i ncl ude "armh"

int32 client_appl _id = -1; /* applicationid */
int32 client_tranid =-1; /* transaction id */
int32 netric_appl_id =-1; /* applicationid */
int32 netric_tranid=-1; /* transaction id */

/********************~k*******~k**/

/* server_application */
/* */
/* This routine is included here to sinplify this exanple. Inareal life */
/* situation, this piece of code would likely be running on a separate */
/* system */

/********************~k*******~k**/

voi d server_application(armapp_correlator_t client_correl ator)

{
int32 server_appl _id=-1; /* unique applicationid */
int32 server_tran_id =-1; /* unique transacation id */
int32 server_tran_handle = -1; /* transaction instance */

armuser_datal t *buf _ptr, buf = {
1, /* header */
{ARM QorrPar_f, 0, 0, O}, /* flags */
b

int32 buf_sz;

76

}

Application Response Measurement AP
Examples

int i, data_len;
server_appl _id=arminit("Server_Application", /* application nane */
e /* use default user */
0,0,0); /* reserved */
server_tran_id = armgeti d(server_appl _id, /* appl _id fromarminit */

" Server_transaction", /* transaction nane */
"First Transaction in Server progrant,

0, /* data buffer */

0,0); /* buffer pointer & size */

/* Pass the parent correlator received fromthe client application to */
/* the ARMagent using the armstart call. */

buf _ptr = &buf;
buf _ptr->flags[0] = ARM CorrPar_f;

buf _ptr->correlator.length = client_correl ator.|ength;
data_len = (client_correlator.length - sizeof(client_correlator.length));
for (i =0; i <datalen; i++)

buf _ptr->correlator.agent_datali] = client_correlator.agent_datali];

buf _sz = (si zeof (buf)-sizeof (client_correlator) + client_correlator.|ength);

server_tran_handle = armstart(server_tran_id, /* tran_id fromarmgetid */
0, /* reserved */
(char *) buf _ptr,
buf _sz);

/**/

/* Performactual transaction processing here */
/**/

arm st op(server _tran_handl e, /* transaction handle fromarmstart */
ARM GOD, /* successful conpletion define = 0 */
0, /* reserved for future use */
0,0); /* buffer pointer & buffer size */

arm end(ser ver _appl _i d, /* application id fromarminit */
0,0,0); /* reserved for future use */

return;

/* server_application() */

77

Application Response Measurement AP
Examples

/********************~k*******~k**/

/*

client_transaction */

/********************~k*******~k**/

voi d client_transaction()

78

int32 client_tran handle = -1; /* transaction start handl e */
armuser_datal t *buf _ptr, buf = {

1, /* Header */

b

int32 buf_sz;

armapp_correlator_t correlator = {

0, /* correlator length */
0, /* agent data */
b

int i, data_len;

buf _ptr = &buf;

buf _sz = si zeof (buf);
/* The client appliation requests a correlator fromthe ARM Agent */

buf _ptr->flags[0] = ARM CorrReq_f;
client_tran_handle = armstart(client_tran_id, /* tran_id fromarmgetid */

0, /* reserved for future use */

(char *) buf_ptr, /* netrics buf ptr */

buf _sz); /* user netric buffer size */
/* 1f the ARMAgent returns a correlator, determine the size of the */
/* agent specific data in the correlator and pass the data, along with */
/* the correlator length, to the server application. */

if ((buf_ptr->flags[0] & ARM QorrGen f) = ARM GorrGen_f) {
correlator.length = buf _ptr->correl ator.|ength;
data_len = (correlator.length - sizeof (buf _ptr->correlator.length));
for (i =0; i <datalen; i++)
correl ator.agent_datali] = buf_ptr->correl ator.agent_data[i];

server_application(correlator);

Application Response Measurement AP

armstop(client_tran_handl e, /* transaction handle fromarmstart */

ARM GOD, /* successful conpletion define =0 */
0, /* reserved for future use */
0,0); /* buffer pointer & buffer size */
return;
} /* client_transaction() */

/***/

/* init_client_application */
/***/

void init_client_application()

{
client_appl id=arminit("Qient_Application", /* application nane */
e /* use default user */
0,0,0); /* reserved for future use */
client_tran_id = armgetid(client_appl _id, /* appl _id fromarminit */

"Qient_transaction", /* transaction nane */
"First transaction in dient application",

0, /* reserved */

0,0); /* buffer pointer & size */

return;

} /* init_client_application */

/***/

/* netric_transaction */
/***/

voi d netric_transaction()

int32 netric_tran handle = -1; /* transaction start handl e */

armuser_datal t *buf_ptr, buf ={

1, /* Header */
{0, ARMA I Metrics_f | ARMSringl f, 0, 0}, /* Hags */
b

int32 buf_sz;

Application Response Measurement AP
Examples

buf _ptr = &buf;
buf _sz = si zeof (buf);

buf _ptr->netric[0].counter32 = 0x32;

buf _ptr->netric[1].gauge32 = 0x32;

buf _ptr->netric[2].counter64. upper = 0x01234567;

buf _ptr->netric[2].counter64.|ower = 0x76543210;

strepy(buf _ptr->netric[3].string8, "Sring 8");

buf _ptr->netric[4].cntrdivr32.count = 0x32;

buf _ptr->netric[4].cntrdivr32.divisor = 0x32;

buf _ptr->netric[5].nunerici dé4. upper = 0x01234567;

buf _ptr->netric[5].nunericidé4. | oner = 0x76543210;

strepy(buf _ptr->string32,"This is a 32 character string ");

netric_tran_handle = armstart(netric_tran_id, /* tran_id fromarmagetid */

0, /* reserved */
(char *) buf_ptr, /* netrics buf ptr */
buf _sz); /* user netric buffer size */

/********************************/

/* Performsone processing here */
/********************************/

armupdat e(netric_tran_handl e, /* transaction handle fromarmstart */
0, /* reserved for future use */
(char *)buf_ptr, /* user netrics buffer pointer */
buf _sz); /* user netric buffer size */

/*************************************/

/* Performsone nore processing here */
/*************************************/

armstop(netric_tran_handl e, /* transaction handle fromarmstart */
ARM GOD, /* successful conpletion define = 0 */
0, /* reserved for future use */
(char *)buf_ptr, /* user netrics buffer pointer */
buf _sz); /* user netric buffer size */
return;
} /* netric_transaction() */

/***/
/* init_netric_application */

/***/

void init_netric_application()

80

Application Response Measurement AP
Examples

{
armuser_datalOl t *buf _ptr, buf = {

101,
{0, ARMA I Metrics f | ARMSringl f, 0, O},
{{1, "Metric #1 - Type 1 is a GONIER32 "},
{4, "Metric #2 - Type 4 is a GAUE32 "},
{2, "Metric #3 - Type 2 is a GONTERB4 "},
{9, "Metric #4 - Type 9 is a STRN=S "},
{3, "Metric #5 - Type 3 is a CANIER32/ DM SCR32"},
{8, "Metric #6 - Type 8 is a NMER A D64 "},
{10, "The last field is al ways a STR N&32 "}
I3 ¥

int32 buf _sz;

buf _ptr = &buf;
buf _sz = si zeof (buf);

nmetric_appl _id=arminit("Mtric_Application", /* application nane */
e /* use default user */
0,0,0); /* reserved */
netric_tran_id = armgetid(netric_appl _id, /* appl _id fromarminit */

" Metric_transaction", /* transaction nane */
"First transaction in Metric application",

0, /* reserved */
(char *) buf_ptr, /* buffer */
buf _sz); /* buffer size */

return;
} /* init_netric_application */
/*****~k***~k~k~k~k~k***********~k~k~k~k**/

/* Main */

/********************~k*******~k**/

nai n()

{
int continue_processing = 1;
init_client_application();

init_netric_application();

81

Application Response Measurement AP
Examples

whi | e (continue_processi ng)

{
client_transaction();
nmetric_transaction();
conti nue_processing = 0;
}
armend(client_appl _id, /* application id fromarminit */
0,0,0); /* reserved for future use */
armend(netric_appl _id, /* application id fromarminit */
0,0,0); /* reserved for future use */
return(0);

82

	Cover, Notice, etc
	Notice
	Printing History
	For Your Information
	Acknowledgments

	Contents
	Application Response Measurement
	Measuring Service Levels
	ARMing Your Applications
	What's New in Version 2.0 of the ARM API

	Basic Tasks
	The SDK
	Shared Library (libarm)
	Logging Agent
	Header File

	Getting Started
	Installation
	For UNIX systems
	For OS/2, Windows

	Using the Logging Agent

	API Function Calls
	arm_init
	arm_getid
	arm_start
	arm_update
	arm_stop
	arm_end

	Advanced Topics
	Application-Defined Metrics
	Internationalization
	Measurement Agent Information
	Examples
	arm.h
	C/C++ (all platforms) Sample 1
	C/C++ (all platforms) Sample 2

